At Mevagissey Primary School we use the mastery approach to the teaching of mathematics, and this is underpinned by the NCETM Five Big Ideas in Teaching for Mastery. We believe that every child should have access to the same curriculum content and, rather than being extended with new learning. Mastering Maths means acquiring a deep, long-term, secure and adaptable understanding of the subject. At any one point in a pupil's journey through school, achieving mastery is taken to mean acquiring a solid enough understanding of the maths that's been taught to enable him/her move on to more advanced material. This means children should deepen their conceptual understanding by tackling challenging and varied problems rather than accelerating through concepts. Children should not be extended with new learning before they are ready. Similarly, with calculation strategies, children must not simply rote learn procedures, but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

The White Rose schemes of learning cover at least the expected content for each year group in the National Curriculum. It also supports the development of reasoning and problem solving as well as fluency so that all the aims of the National Curriculum are met and links to the DFE's "Ready to progress" criteria. Based on extensive research and years of classroom practice, White Rose schemes are written by practising teachers for teachers. They use a concrete-pictorial-abstract approach to support children to understand the maths they are learning and to be able to use it elsewhere.

- Concrete representation: a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation: a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation: a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

The "small step" approach means nothing is left to chance - all curriculum objectives are broken down into accessible parts that build on each other so the learning journey is complete. Example questions are provided together with notes and guidance for teaching each step; teachers and children are both supported.

This calculation policy is a guide for all Staff at Mevagissey Primary School and has been adapted from work by the NCETM and the White Rose Maths scheme of work. It is purposely set out as a progression of mathematical skills and the different calculation strategies that should be taught and used in Year 1 to Year 6. These strategies and skills are in line with the requirements of the 2014 Primary National Curriculum. All teachers have been given the scheme of work from the White Rose Maths Hub which are used to supplement the planning of appropriate teaching sequences. It is expected that teachers will use their professional judgement as to when consolidation of existing skills is required or if to move on to the next concept.

Addition

Addition - Year One

National Curriculum 2014 Statutory Requirements.

- Read, write and interpret mathematical statements involving addition (+) and equals ($=$) signs and relate this to balance sums and scales
- Represent and use number bonds and related subtraction facts within 20
- Add one-digit and two-digit numbers to 20, including zero
- Solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $9=$ 团 7 .

Vocabulary:

Groups, part-whole modal, number sentence, part, whole, plus.

Skill	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part whole model.			$4+3=7$
	Use part whole model using cubes or Numicon.	Children to represent cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7 .$ Four is a part, three is a part and the whole is seven.
Starting at the bigger number and counting on.	Counting on using number lines, cubes, Numicon, bead strings etc.		What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2=$
	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	A bar model which encourages the children to count on, rather than count all. Start at the larger number on the number line and count on in ones.	Place the larger number in your head and count on the smaller number to find the answer.

Regrouping to make 10: using ten frames and counters/cubes or using Numicon.

TO + O using base 10.

	$8+7=15$ 2. 5 $3+9=$	$\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Start with the bigger number and use the smaller number to make 10. Use ten frames.	Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality.
	105 $1 s$ 1111 \ldots 4 $\ldots \ldots$	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$
Continue to develop understanding of partitioning and place value.	Children to represent the base 10. Highlight the importance of ten ones equalling one ten.	Place the larger number in your head and count on the smaller number to find your answer.

Addition - Year Two

National Curriculum 2014 Statutory Requirements.

- Solve problems with addition:
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures,
- applying their increasing knowledge of mental and written methods.
- Recall and use addition facts to 20 fluently and derive and use related facts up to 100.
- Add numbers using concrete objects, pictorial representations and mentally, including: - a two-digit number and ones - a two-digit number and tens - two twodigit numbers - adding three one-digit numbers.
- Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot.
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Vocabulary:

Bridging ten, counting on, inverse operation, partition, add, altogether, commutative, more, total, exchange, how many more, part-whole modal, number sentence, bar modal, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, addition, column, tens boundary.

41 is 4 tens and 1 one.
41 add 6 ones is 4 tens and 7 ones.

Adding a 2-digit number and ones (no bridging beyond 10).

Children should see the pattern when we add and subtract 1 and comment on what happens.

This can also be done in a place value grid.

Children to explore patterns. Use Base 10 and ten frames to make a ten

16 is 1 ten and 6 ones.
30 is 3 tens.
There are 4 tens and 6 ones in total.

Explore that the ones digit does not change. Use known bonds and unitising to add 10 s.

34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.

or
Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy.
T O I 6 3 0 4 6$\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Children to continue to develop an understanding of equality.

Add two 2-digit number to 100 (no regrouping). Focus on language of tens and ones and look at different methods to add the numbers including column method.		$10 s$ $1 s$ $\bullet \bullet$ $\bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet$ 5 6	$\begin{array}{r\|r} T & 0 \\ \hline 3 & 2 \\ 1 & 4 \\ \hline 4 & 6 \\ \hline \end{array}$
	Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Addition of two numbers can be done in any order (commutative).
Add two 2-digit number to 100 (with regrouping). Use Base 10 and partitioning to add together 2-digit numbers including an exchange.	Tens Ones 10 $6808:$ 00008Tens Ones 4 18 $8 \theta^{\circ}$ 0 		$\begin{array}{r\|c\|} \hline & 0 \\ \hline 3 & 6 \\ +2 & 9 \\ \hline 6 & 5 \\ \hline \end{array}$
	Add the ones. Exchange ten ones for a ten/ Then add the tens. Addition of two numbers can be done in any order (commutative).	Addition of two numbers can be done in any order (commutative).	Add the ones. Exchange ten ones for a ten/Then add the tens. Addition of two numbers can be done in any order (commutative).

Add three 1-digit.
Use knowledge of
commutativity to
find the most
efficient and quick
ane-digit numbers.
one

Addition - Year Three

National Curriculum 2014 Statutory Requirements.

- Add numbers mentally including:
- a 3-digit number and ones
- a 3-digit number and tens
- a 3-digit number and hundreds
- a 3-digit number and thousands
- Add numbers with up to three digits, using formal written methods of columnar addition.
- Estimate the answer to a calculation and use inverse operations to check answers.
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.

Vocabulary:

+, add, addition, more, plus, make, sum, total, altogether, double, near double, one more, two more... ten more... one hundred more, how many more to make ...? how many more is... than ...? how much more is...? =, equals, sign, is the same as.

Addition - Year Four

National Curriculum 2014 Statutory Requirements.

- Add with up to 4 digits using the formal written methods of columnar addition where appropriate.
- Estimate and use inverse operations to check answers to a calculation.
- Solve two-step problems addition in contexts, deciding which operations and methods to use and why.

Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, double, near double, how many more to make...? tens boundary, hundreds boundary, inverse=, equals sign, is the same as.

Column method
to add two pairs of numbers up to 4-digits (with exchanges).

Start by adding numbers where there is one exchange required before looking at question where they need to exchange in two columns.

Children continue to use Base 10 or place value counters to add, exchanging tens ones for a ten and ten tens for a hundred and ten hundreds for a thousand.

Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.

11

Children will move onto recording more formally. Use inverse knowledge to workout missing numbers.

Addition - Year Five

National Curriculum 2014 Statutory Requirements.

- Add whole numbers with more than 4 digits, including using formal written methods (columnar addition).
- Add numbers mentally with increasingly large numbers.
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why.

Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, double, near double, how many more to make...? inverse, primes, prime factors, composite numbers, equals, sign, is the same as.

Skill	Concrete	Pictorial	Abstract
Column method to add two pairs of numbers with more than 4 digits (with exchanges). Start by adding numbers where there is one exchange required before looking at question where they need to		\bullet \bullet \bullet \bullet $\bullet \bullet$ $\bullet \bullet$ \bullet \bullet \bullet \bullet 7 1 5 1 \bullet \bullet	 I will use $23,000+8,000$ to check.
columns.	Children continue to use Base 10 or place value counters to add, exchanging tens ones for ten and ten tens for a hundred and ten hundreds for a thousand.	Represent additions, using place value equipment on a place value grid alongside written methods. Bar models represent addition of two or more numbers in the context of problem solving.	Children will move onto recording more formally. Begin to use rounding to +estimate the answer to a calculation.

Addition - Year Six

National Curriculum 2014 Statutory Requirements.

- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why.

Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, double, near double, how many more to make...? inverse, primes, prime factors, composite numbers, equals, sign, is the same as.

Skill	Concrete	Pictorial	Abstract
Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimal places.	Ones Tenths Hundredths 1 1 1 Exchanges as shown in concrete and pictorial images above.	$\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 92 \\ +0 \cdot 33 \\ \hline 1 \cdot 25 \\ \hline 1 \end{array}$	$\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \end{array}$
	As the same as Year 5. Children continue to use Base 10 or place value counters to add, exchanging tens ones for ten and ten tens for a hundred and ten hundreds for a thousand.	As the same as Year 5. Represent additions, using place value equipment on a place value grid alongside written methods. Bar models represent addition of two or more numbers in the context of problem solving.	Adding several numbers with increasing complexity. Adding place holders to support place value calculations.

Subtraction

Subtraction - Year One

National Curriculum 2014 Statutory Requirements.

- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs.
- Represent and use number bonds and related subtraction facts within 20.
- Subtract one-digit and two-digit numbers to 20, including zero.
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $9=$ 回 -7 .

Vocabulary:

equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is.
Skill
F

Subtraction - Year Two

National Curriculum 2014 Statutory Requirements.

- -Solve problems with subtraction:
using concrete objects and pictorial representations, including those involving numbers, quantities and measures.
- -Applying their increasing knowledge of mental and written methods
- - Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
- - Subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones
- a two-digit number and tens
- two two-digit numbers
- -Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- -Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Vocabulary:

equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens ones.

Subtraction - Year Three

National Curriculum 2014 Statutory Requirements.

- Subtract numbers mentally, including:
- a three-digit number and ones
-a three-digit number and tens
- a three-digit number and hundreds
- a three-digit number and thousands
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction.
- Estimate the answer to a calculation and use inverse operations to check answers.
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

Vocabulary:

Take (away), leave, How many are left/left over? How many have gone? One less, two less... ten less...How many fewer is...than...? Difference between is the same as, Subtract, minus, How much less is? Half, halve, Equals, sign, One hundred less, Tens boundary, Subtraction, Hundreds boundary

Using the column method to subtract pairs of numbers (with exchanging). Up to 3 digits.

Subtract decimals with 2 decimal places, including money.

tens, and 1 ten for 10 ones.

Children may draw Base 10 or PV counters and cross off. number, children should understand how the recording relates to the place value, and so how to line up the digits correctly.
Children should also understand how to exchange in calculations where there is a zero in the 10 s column.

Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places.

Subtraction－Year Four

National Curriculum 2014 Statutory Requirements．

－Subtract with up to 4 digits using the formal written methods of columnar subtraction where appropriate．
－Estimate and use inverse operations to check answers to a calculation．
－Solve subtraction two－step problems in contexts，deciding which operations and methods to use and why．

Vocabulary：

Take（away），leave，how many are left／left over？How many have gone？One less，two less．．．ten less．．．How many fewer is．．．than．．．？Difference between is the same as，Subtract，minus，How much less is？Half，halve，equals，sign，one hundred less，tens boundary，Subtraction，hundreds boundary，Decrease，Inverse

Skill	Concrete	Pictorial	Abstract
Using expanded column method to subtract pairs of numbers （with exchanging）． Up to 4 digits． Explore what happens when a subtraction has more than one exchange． Encourage children to continue to explain their		Th H T 0 Θ $\Theta ⿱ 日 一$ $O \odot Q Q$	Th H T O I 2 5 0 - 4 2 0 3 0Th H T 0 Y 2 5 0 4 2 0 8 3 0$-\begin{array}{\|c\|ccc} \text { Th } & H & \text { T } & 0 \\ \hline Y & 2 & 5 & 0 \\ & 4 & 2 & 0 \\ \hline & 8 & 3 & 0 \\ \hline \end{array}$
	Understand why exchange of a 1,000 for 100 s ，a 100 for 10 s ，or a 10 for 1 s may be necessary．	Represent place value equipment on a place value grid to subtract，including exchanges where needed．Use of bar model to support understanding．	Use column subtraction，with understanding of the place value of any exchange required．Children must understand what has happened when they have crossed out digits．

Subtraction - Year Five

National Curriculum 2014 Statutory Requirements.

- Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
- Subtract numbers mentally with increasingly large numbers.
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Vocabulary:

Take (away), leave, how many are left/left over? How many have gone?
One less, two less... ten less... How many fewer is...than...? Difference between is the same as, Subtract, minus, how much less is? Half, halve, equals, sign, one hundred less, tens boundary, Subtraction, Hundreds boundary, Decrease, Inverse, ones boundary, tenths boundary

Skill	Concrete	Pictorial	Abstract					
Subtracting with at least 4-digit numbers (with exchange). Build on Year 4 knowledge of subtracting using the formal column method. Children will be focusing on more than one	$2,250-1,070$	$15,735-2,582=13,153$Th Th H 0 Now subtract the 10s. Exchange I hundred for 10 tens Subtract the 100 s , $1,000 \mathrm{~s}$ and $10,000 \mathrm{~s}$.	1 +	0 6 6	4 1 6 1 61	3 7 0	2 3 5	8 1 9
	Use place value equipment to understand where exchanges are required.	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.	Use column subtraction methods with exchange where required.					

Subtraction - Year Six

National Curriculum 2014 Statutory Requirements.

- Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Vocabulary:

Take (away), leave, how many are left/left over? How many have gone?
One less, two less... ten less...How many fewer is...than....? Difference between is the same as, Subtract, minus, how much less is? Half, halve, equals, sign, one hundred less, tens boundary, subtraction, hundreds boundary, dcrease, Inverse, ones boundary, tenths boundary.

Skill	Concrete	Pictorial	Abstract					
Subtracting	2,250-1,070	$15,735-2,582=13,153$						
digit numbers		${ }^{\text {The }}$	1	0	4	3	2	8
exchange).		Now subtroct the ios. Exchonge I Tundided for 10 tem.	+	6	1	7	3	1
Build on Year 4 knowledge of		5	1	6	6	0	5	9
subtracting using the formal column method.			1					
than one exchange.	As seen in Year 5. Use place value equipment to understand where exchanges are required.	As seen in Year 5. Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.	As seen in Year 5. Use column subtraction methods with exchange where required.					

Multiplication

Multiplication - Year 1

National Curriculum 2014 Statutory Requirements.

- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Vocabulary:

Groups of, lots of, times, array, altogether, multiply.

Skill	Concrete	Pictorial	Abstract
Doubling Children explore doubling with numbers up to 20 Reinforce understanding that 'double' is two groups of a number or an amount.	double 4 is 8 $4 \times 2=8$	Double 4 is 8	
	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling.	Draw pictures to show how ot double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples (2s, 5 s and 10 s).	There are 5 pens in each pack ... $5 \ldots 10 \ldots 15 \ldots 20 \ldots 25 \ldots 30 \ldots 35 \ldots 40 \ldots$	$-00000-00000-00000-00000-$	Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$
	Count in multiples supported by concrete objects in equal groups. Children use a variety of objects and resources to group.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers.

Repeated addition/ grouping

Children start
with a given
total and make
groups of an equal amount. They record their understanding in sentences, not through formal division at this stage.

3×4

$4+4+4$
There are 3 equal groups, with 4 in each group.
 understand repeated grouping/addition.

$5+5+5+5=20$
$4 \times 5=20$
$5 \times 4=20$

Multiplication - Year 2

National Curriculum 2014 Statutory Requirements.

- Recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals ($=$) signs
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Vocabulary:

Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative.

Skill	Concrete	Pictorial	Abstract
Arrays Children explore arrays to see the commutativity of multiplication facts e.g. $5 \times 2=$ 2×5 The use of the array could be used to help children calculate multiplication statements.	$2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	00 00000 00 00000 00 00 00	Children to be able to use an a rray to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.

| Multiplicatio |
| :---: | :---: | :---: | :---: |
| n is |
| commutative. |

Multiplication - Year 3

National Curriculum 2014 Statutory Requirements.

- Recall and use multiplication facts for the $3,4,8$ and 9 multiplication tables.
- Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
- Solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where n objects are connected to m objects.

Vocabulary:

Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up.

Skill	Concrete	Pictorial	Abstract
Area method - multiplying two-digit number by a one-digit number. Introduce in Year 3 due to being taught in Year 5.	 4 rows of 10,4 rows of 3 Fill each row with 126.	$4 \times 3=72$ \times 20 4 3 00 0000 00 0000 00 0000 60 12 60 $+\frac{12}{72}$	\times 30 5 7 210 35$210+35=245$
	Show the link with arrays to first introduce the area method. Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.	Start with multiplying by one-digit numbers and showing the clear addition alongside the grid. Moving forward, multiply by a 2 digit number showing the different rows within the area method.

Multiplication - Year Four

National Curriculum 2014 Statutory Requirements.

- Recall and use multiplication facts for multiplication tables up to 12×12.
- Use place value, known and derived facts to multiply mentally, including: $x 0 \times 1$ and multiplying together three numbers
- Recognise and use factor pairs and commutativity in mental calculations.
- Multiply two-digit and three-digit numbers by a one-digit number using formal written layout.
- Solve problems involving multiplying, including the distributive law to multiply two-digit numbers by one digit including positive number scaling problems and correspondence problems where n objects are connected to m objects.

Vocabulary:

Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse, derive.

Multiplication - Year Five

National Curriculum 2014 Statutory Requirements.

- Identify multiples and factors: all factor pairs of a number, common factors of two numbers, establish whether a number up to 100 is prime and recall prime numbers up to 19.
- Multiply numbers up to four digits by a one or two-digit number using a formal written method.
- Multiply whole numbers and those involving decimals by 10, 100 and 1000.

Vocabulary:

Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse, derive, factor pairs, composite numbers, prime number, factors, squared, cubed

Multiplication - Year Six

National Curriculum 2014 Statutory Requirements.

- Identify multi-digit numbers up to 4 digits by a two-digit number using formal, long multiplication.
- Identify common factors, common multiples and common prime numbers.
- Use their knowledge of the order of operations to carry out calculations involving the four operations.

Vocabulary:

Groups of, lots of, times, array, altogether, multiply, multiplied by, repeated addition, sets of, equal groups, times as big as, commutative, product, multiples of, scale up, inverse, derive, factor pairs, composite numbers, prime number, factors, squared, cubed.

Division

Division - Year One

National Curriculum 2014 Statutory Requirements.

- Solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Vocabulary:

Share, share equally, one each, two each..., group, groups of, lots of, array.

Skill	Concrete	Pictorial					Abstract
Sharing objects into equal groups Focus on terminology of equal groups.	Use a range of objects/resources to share. . Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.						12 shared between 3 is 4 Share 9 buns between three people. $9 \div 3=3$
Grouping	Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups. Learn to make equal groups from a whole and find how many equal groups of a certain size can be made.	. Think of th groups you	?	20 1 ? ole. Sp and w each	? it int out up.	e number of many would	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division - Year Two

National Curriculum 2014 Statutory Requirements.

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables
- Recognising odd and even numbers
- Calculate mathematical statements for division within the multiplication tables and write them using the signs \div and $=$
- Show that multiplication of two numbers is commutative but division is not
- Solve problems involving division using materials, arrays, repeated addition, mental methods and division facts, including problems in contexts.

Vocabulary:

Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over.

Skill	Concrete	Pictorial	Abstract
Division within arrays - linking to multiplication.	$\begin{array}{rl} \text { E.g. } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$		$\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
	Children link division to multiplication by creating an array and thinking about the number sentences that can be created.	Children draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences.

Division - Year Three

National Curriculum 2014 Statutory Requirements.

- Recall and use multiplication and division facts for the 3, 4, 8 and $9 x$ tables.
- Write and calculate mathematical statements for division using the multiplication tables they know, including 2-digit divided by 1-digit using mental and progressing to formal written methods
- Solve problems, involving missing number problems, division, including positive number scaling problems and correspondence problems where n objects are connected to m objects.

Vocabulary:

Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, product.

Skill	Concrete	Pictorial	Abstract
Remainders Introduce in Year 3 due to being taught in Year 4.	Use of lollipop sticks to form wholessquares are made because we are dividing by 4 . There are 3 whole squares, with 1 left over.	There are 3 whole squares, with 1 left over.	' 3 groups of 4 , with 1 left over'
	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further.	Use images to explain remainders.	Understand that the remainder is what cannot be shared equally from a set. Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.

2-digit number divided by 1 digit number, with exchange and remainders

Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups.

Make 29 from place value equipment. Share it into 2 equal groups.

There are two groups of 14 and 1 remainder.

$29 \div 2=$?
\qquad
Use place value equipment to understand the concept of

$$
\begin{aligned}
& \text { Use place value equipment to und } \\
& \text { remainder. }
\end{aligned}
$$

romainder

$29+2=14$ remainder 1

67 children try to make 5 equal lines.
$67=50+17$
$50+5=10$
$17+5=3$ remainder 2
$67+5=13$ remainder 2
There are 13 children in each line and 2 children left out.

Division - Year Four

National Curriculum 2014 Statutory Requirements.

- Recall multiplication and division facts up to 12×12.
- Use place value, known and derived facts to divide mentally, including dividing by 1.
- Solve problems involving dividing a three-digit number by one-digit and number using a formal layout.

Vocabulary:

Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, product, division facts, inverse, derive, formal written method

Skill	Concrete	Pictorial	Abstract
Partitioning to support division of dividing 2 and 3 digit numbers by 1 digit numbers (no remainders)	$84 \div 4$$609 \div 3$Hundreds Tens Ones ∞ 1 1 1 1 1 Use of place value counters and base 10 to support partitioning and sharing into equal groups.		$\begin{aligned} & 84 \div 4=21 \\ & 80 \div 4=20 \\ & 4 \div 4=1 \\ & \rightarrow 20+1=21 \\ & \\ & 609 \div 3=203 \\ & 600 \div 3=200 \\ & 0 \div 3=0 \\ & 9 \div 3=3 \\ & \rightarrow 200+0+3=203 \end{aligned}$

Partitioning to support division of dividing 2 and 3 digit numbers by 1 digit numbers (with remainders)

Use of place value counters and base 10 to support partitioning and sharing into equal groups.
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 2. How many group
hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones,
6. How many groups of 5 ones can you make with 15 ones?

Divide up to 3 digit numbers by 1 digit. Short division Introduce in Year 4 due to being taught in Year

5

Division - Year Five

National Curriculum 2014 Statutory Requirements.

- Identify multiples and factors, including:
- finding all factor pairs of a number
- common factors of two numbers
- know and use the vocabulary of prime numbers and establish whether a number up to 100 is prime.
- Multiply and divide numbers mentally drawing on known facts.
- Divide numbers up to 4 digits by a one-digit number using a written method and interpret remainders appropriately for the context.
- Divide whole numbers and those involving decimals by 10,100 and 1000.

Vocabulary:

hare, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, product, division facts, inverse, derive, formal written method.

Skill	Concrete	Pictorial	Abstract
Short division division of up to 4-digit numbers by 1 digit numbers (no remainders). Children use their knowledge from Year 4 of dividing 3-digits numbers by a 1-digit number to divide up to 4-digit numbers by a 1-digit number.	$615 \div 5$100s 10s 1s $\Theta \theta$ 00000 $\Theta \theta$ 0000 00000 0θ 0000 00000 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6 . How many groups of 5 ones can you make with 15 ones?		
	As seen in Year 4. Short division using place value counters to group.	As seen in Year 4. Represent the place value counters pictorially.	As seen in Year 4. Children to the calculation using the short division scaffold.

Division - Year Six

National Curriculum 2014 Statutory Requirements.

- Divide numbers up to 4 digits by a two-digit number using the formal written method of long division.
- Interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the context.
- Divide numbers up to 4 digits by a two-digit number using the formal written method of short division as appropriate.

Vocabulary:

hare, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, product, division facts, inverse, derive, formal written method.

Division of decimal numbers by integers.	$3.69 \div 3=1.23$						$0 \cdot 5$
	Ones * Tenths	Mindreaths	0.8				
	(1)	0 -	?		?		
		- - -	$4 \times 2=$		$8 \div 4=2$		+
	Children to circle groups to support understanding.		So, $4 \times 0.2=0.8$		$0.8 \div 4=0.2$		
	Use place value equipment to explore division of decimals.		Use a bar model to represent divisions. Use of the part-whole model to sup Emphasis on place value and correct vocabulary - e.g. 2 tenths not 2 . port partitioning.				Use short division to divide decimals with up to 2 decimal places.

